|
ICLR 2023은 인공지능(AI) 분야의 가장 권위 있는 학회 중 하나다. 올해 최우수논문상은 전체 1574편의 논문 중 상위 4편에 주어졌다.
홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초다. 또한 주요 기계학습 학회에서 국내 기관이 주축이 돼 진행한 연구로 최우수논문상을 수상한 최초 사례이기도 하다.
KAIST 전산학부 김동균 박사과정(제1 저자), 김진우 박사과정, 조성웅 석사과정과 마이크로소프트 리서치 아시아의 총 루오 박사로 구성된 홍승훈 교수 연구팀은 컴퓨터 비전 분야의 핵심 연구 주제인 ‘픽셀 레이블링 문제’를 획기적으로 적은 수의 데이터로 해결할 수 있는 범용적 방법론 ‘비주얼 토큰 매칭’(Visual Token Matching) 기법을 제안했다.
홍 교수는 이번 연구를 통해 의료 영상처럼 학습 데이터 수집이 병목되는 다양한 도메인에서 컴퓨터 비전 기술을 적용하는데 돌파구가 되기를 기대한다고 평가했다.
이번 연구를 주도한 김동균 박사과정은 적은 수의 데이터로 학습할 수 있는 범용적 기계학습 방법론을 계속 연구해 왔으며, 이의 이론적 토대가 되는 연구를 지난 ICLR에 출판한 바 있다. 김동균 박사과정은 이번 연구로 삼성 휴먼테크 논문대상에서 은상을 수상하기도 했다.
홍 교수는 “상을 받게 되어 영광이고, 이번 수상이 국내 기계학습 연구자들에게 자신감이 되어 한국에서 더 많은 도전적인 연구들이 나오는 데 도움이 된다면 기쁠 것 같다”고 밝혔다.