|
SK쉴더스는 2025년 주요 보안 위협 중 하나로 AI 기반의 해킹 증가를 꼽으며, 특히 소규모 언어 모델(sLLM)을 겨냥한 해킹과 LLM의 구조적 취약점을 악용한 데이터 조작 및 유출 공격이 심화될 것으로 내다봤다. 이러한 위협에 대응하기 위해 발간된 이번 가이드는 ‘OWASP Top 10 for LLM Applications 2025’의 주요 항목을 모두 포함하고 있으며 △LLM 통합 △에이전트 △모델의 세 가지 핵심 영역의 보안 이슈를 다루고 있다. 특히 14개의 주요 취약점을 위험도에 따라 3단계로 분류해 점검 방법과 대응 방안을 제시하고 있다.
API 매개 변수 변조는 시스템 간 통신에 사용되는 API 요청값을 변경해 시스템 권한을 초과하는 동작을 실행시키는 위협이다. 이를 통해 악성 이메일 전송, 데이터 유출, 시스템 장악과 같은 심각한 문제가 발생할 수 있다. 또한, RAG 데이터 오염은 외부 데이터를 악의적으로 조작해 검색된 정보의 신뢰도를 떨어뜨리는 방식으로 보안 문제를 야기한다. 이 외에도 서드파티 소프트웨어 사용과 보호된 영역 안에서만 프로그램이 작동 가능한 샌드박스 미적용도 위험도가 높은 항목으로 꼽혔다.
이번 가이드에서는 이러한 보안 위협을 예방하기 위해 사용자와 시스템 명령어(프롬프트)를 분리하고, 데이터 흐름 점검 및 데이터 검증 절차를 강화해야 한다고 강조했다. 또한, LLM의 코드 실행 유무에 따라 샌드박스를 활용해 악성코드 실행을 방지하고, RAG 활용 시 권한 없는 데이터 접근을 차단하기 위해 그룹별 권한 관리 체계를 구축할 것을 권고했다. 특히, 다층 보안 체계를 도입해 데이터 오염 및 권한 상승 공격을 방지해야 한다고 덧붙였다.
김병무 SK쉴더스 사이버보안부문장(부사장)은 “AI 기술은 편리함을 제공하지만 기술적 불안정으로 인해 보안 취약점이 악용될 경우 심각한 해킹 사고가 발생할 수 있다”라며, “이번 가이드는 기업과 기관이 직면할 수 있는 AI 보안 문제를 사전에 예방함과 동시에, 신뢰할 수 있는 AI 시스템을 구축하는 데 실질적 도움을 줄 것으로 기대된다”라고 말했다.