연세암병원 방사선종양학과 박상준 · 김진성 교수가 카이스트 김재철AI대학원 예종철 교수 · 오유진 연구원과 방사선치료 정확도를 2.36배 높일 수 있는 치료 계획 수립 인공지능을 만들었다고 7일에 밝혔다. 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 게재됐다.
방사선치료는 고선량의 방사선을 조사해 암세포를 죽이는 항암치료다. 문제는 암세포 주변의 정상조직도 함께 파괴될 수 있다는 것이다. 이러한 부작용를 줄이는 동시에 치료 효과를 높이는게 치료 계획 수립에서 관건이다.
방시선치료 계획을 세우기 위해서는 의료진이 환자 정보와 컴퓨터단층촬영(CT) 등 영상검사 결과를 토대로 정상 장기와 암조직의 윤곽을 구별하는 과정을 거친다. 일일이 수작업으로 진행하는 만큼 시간 소모가 크다는 한계가 있었다.
|
연구팀은 AI 성능 검증을 이어갔다. 외부 검증과 전문가 평가에서 기존 인공지능 모델 대비 각각 1.9배, 2.36배 높은 점수를 자랑했다. 인공지능과 의료진이 종양이라고 선정한 볼륨(Clinical Target Volume · CTV)이 얼마나 일치하는지 확인하는 외부 검증에서 연구팀 인공지능은 의료영상만 활용한 인공지능보다 1.9배 높은 점수를 획득했다. 보통 인공지능 모델은 학습기관이 아닌 외부기관 데이터로 검증할 때 점수가 낮아지는게 일반적인데 우수한 성적을 확인할 수 있었다. 방사선종양학과 전문의가 평가한 정확도 검사에서도 점수는 2.36배 뛰어났다.
박상준 교수는 “이번 연구는 LLM 기술이 실제 환자 진료에 어떻게 적용할 수 있는지를 보여주는 중요한 사례”라며 “앞으로 더 많은 연구를 통해 의료 현장에서 AI의 적용 범위를 넓혀갈 계획”이라고 밝혔다.