서울의대와 국립암센터 연구팀(심진아, 김영애 박사, 윤영호 교수)은 폐암 치료 후 암 생존자들의 생활 습관 및 삶의 질 정보를 활용하여 머신러닝 기반의 사망예측 모델을 개발했으며, 이를 통해 5년 후 암 생존자의 사망을 보다 정확하게 예측하는데 성공했다. 이번 암 생존자 사망 예측 모형은 2001년부터 2006년 사이에 국립암센터와 삼성서울병원에서 수술 후 완치를 판정받은 폐암 환자 809명을 대상으로, 2006년 ~ 2007년도에 걸쳐 생활 습관 및 삶의 질 자료를 수집했으며 이 자료를 바탕으로 5년 후의 사망을 예측했다.
폐암은 국내 암 사망률 1위의 암이다. 이렇듯, 장기생존이 어려운 암으로 알려졌음에도 불구하고, 최근 진단 및 치료 기술의 발전으로 생존율이 점차 높아지고 있다. 암 생존자가 점차적으로 증가함에 따라 치료 후 삶의 질 및 생활습관 관리등도 주목받고 있다.
연구팀은 잘 알려진 폐암 예후 인자(연령, 성별, 병기요인, 종양의 특성 등)외에도 삶의 질과 생활습관 정보(불안, 우울, 삶의 질, 긍정적 성장 및 과체중)들이 실제로 암 생존자들의 5년 이후의 생존예측력을 높일 수 있는지를 중점적으로 연구하였으며, 이에 대한 예측정확도를 높이고자 머신러닝 알고리즘을 적용하였다. 그동안 폐암 환자를 대상으로 삶의 질과 사망 위험 간의 상관성을 장기간에 걸쳐 분석하여, 머신러닝 및 AI등의 알고리즘을 적용하여 사망 예측모형으로까지 만든 연구는 거의 없었다.
연구팀은 폐암 치료 후 암 생존자들의 생활 습관 및 삶의 질 정보를 활용하여 개발 된 사망 예측 모형은 기존의 잘 알려져 있는 예후 요인인 연령, 성별, 종양의 특성 등만 활용한 모델의 사망 예측보다 훨씬 더 정확했다고 밝혔다. 또한, 다양한 머신러닝기법을 적용함으로써 암 사망에 대한 예측력을 보다 높일 수 있다고 밝혔다.
모든 수치계산이 완료되었을 때, 암 생존자들이 기존의 예후인자들만 고려한 랜덤포레스트 (Random Forest) 모델과 아다부스트(Adaptive Boosting) 모델은 암 생존자들의 5년 생존여부를 약 69.1% 와 71.3%만 정확하게 예측하는 수준인 반면, 삶의 질 및 생활습관을 고려한 랜덤포레스트 알고리즘 및 아다부스트 모델은 폐암 생존자 5년 생존여부의 94.1% 와 94.8%를 정확하게 식별해 보다 정확한 예측을 제공했다.
국내 암 경험자가 170만 명을 넘었고, 5년 넘는 암 생존자가 100만명을 넘은 가운데, 대부분의 환자는 치료 후에는 재발 여부를 확인하는 것 이외에는 적절한 관리를 받지 못해 암 재발이나 사망에 대한 막연한 불안을 가지고 있다. 윤영호 교수는 “암 치료 후 재발 감시뿐 아니라 운동, 식이 등과 함께 삶의 질을 평가하고 체계적으로 관리할 수 있도록, 사망 예측 및 관리 모형을 포함한 통합케어 시스템을 갖추는 것이 시급하다. 그리고 이에 대한 보험수가 인정 등 국가 차원의 지원이 반드시 이뤄져야 한다”고 밝혔다.
이 연구 결과는 Nature 계열의 권위 학술지인 ‘Scientific Report‘ 최근호에 게재했다.