가톨릭의대 재활의학과 임선 교수(부천성모), 박혜연 임상강사(서울성모), 포항공대 이승철 교수, 박도겸 학생은 머신러닝 기술을 이용한 자동 음성 신호 분석을 통해 중증 연하장애 환자 및 흡인성 폐렴 발생 위험이 높은 환자를 각각 88.7% 및 84.5%의 민감도로 구별하였다.
흡인성 폐렴은 뇌졸중 환자의 약 3분의 1에서 발생하는 것으로 알려져 있으며, 이러한 호흡기계 합병증의 발생은 뇌졸중 후 나쁜 예후와 관련이 있다. 연하곤란(삼킴장애)이 있는 환자에서 흡인성 폐렴의 발생 위험이 높기 때문에 연하곤란 중증도를 정확하게 예측하는 것은 중요하다.
이번 연구는 SCIE 학술지인 ‘사이언티픽 리포트(Scientific Reports)’에 10월 게재됐다.
한편 가톨릭의대 임선 교수-포항공대 이승철 교수팀은 지난 2020년 AI 기술을 활용한 음성 기반 후두암 진단 관련 논문을 발표, 첫 음성 신호 기반 인공 지능 활용 연구로 학계의 주목을 받은 바 있다.