강동경희대학교병원 소화기내과 곽민섭 교수팀은 한국연구재단 과제로 대장암의 림프절 전이 진단모델과 평가지수를 개발했다. 연구를 통해 앞으로 대장암에 있어 보다 편리하고 정밀한 진단과 치료가 가능할 것으로 보인다. 연구 결과는 국제학술지 Frontiers in Oncology에 최신호에 게재됐다.
◇대장암 치료법 수립에 중요한 ‘림프절 전이 유무’
대장암은 2017년 우리나라에서 발생한 암 중 남녀 합산 두 번째로 많은 암이다. 사망률도 매우 높아 폐암, 간암에 이어 3위를 기록하고 있다. 대장암은 위치, 깊이, 전이 등 여러 가지 요소에 따라 내시경치료, 수술, 항암화학치료, 방사선치료 등 다양한 치료법이 결정된다. 이중 림프절 전이 유무는 초기 대장암 환자가 내시경 치료 후 추가 수술과 항암화화요법이 필요하지를 결정할 수 있는 중요한 예후 요인이다.
◇기존 검사 한계로 정밀한 진단, 전이 예측 어려워
◇컴퓨터 이미지 분석기술과 AI 접목, 전이 예측 시스템 구현
강동경희대학교병원 소화기내과 곽민섭 교수팀은 이러한 최신 컴퓨터 이미지 분석기술과 AI(인공지능)와 접목하여 대장암의 림프절 전이 예측 시스템을 개발했다. 암 전이에 중요한 작용을 한다고 알려진 ‘암 주위 미세환경’을 분석하여 전이 여부를 예측하는 방법이다. 조직 슬라이드에서 암조직과 암조직 주변 간질영역의 비율을 이용해 예측 평가점수인 PTS 점수를 개발했다. 먼저 조직을 정상 대장점막, 간질, 림프구, 점액, 지방조직, 평활근, 대장암의 7개 클래스로 나누어 영역에 대한 명확한 구역화 훈련을 통해 AI모델을 개발하고, 이 중 암조직과 주위 간질영역을 추출하여 형태연산 방법을 통하여 점수를 계산하도록 했다.
◇곽민섭 교수팀, 진단모델과 평가지수 유용성 확인
◇대장암환자의 전이 유무 예측으로 정밀 맞춤치료 가능
이번 연구로 기존 병리조직 검사의 한계를 극복하고 방대한 전체 슬라이드를 보다 정확하고, 세밀하게 분석할 수 있는 기틀이 마련됐다. 또한 대장암 환자에서 편리하고 정확하게 림프절 전이 위험을 확인함으로써 치료의 효과를 극대화할 수 있을 것으로 보인다.
곽민섭 교수는 “이번 모델을 통하여 정확하고 대장암 전이를 예측해 환자 개개인에 맞는 치료 및 추적 관찰 방법을 구축할 수 있다”면서 “향후 후속 임상시험과 보다 심층적인 AI 연구개발로 정밀의료(Precision medicine)를 가능하게 할 수 있을 것으로 생각한다”고 말했다.