|
무작위 시뮬레이션을 기반으로 상황 예측에 대한 기댓값을 추정하는 기존 기법은 실행 시간이 오래 걸리고 복잡해 높은 연산량이 요구되는 실시간 상용 게임에 적용하는데 한계가 있다.
특히 실시간 전략 게임인 스타크래프트2는 각 게임 참여자가 제한적 환경 관측만 가능한 여건에서 자원 확보와 상대편의 종족·동태 등을 종합 고려해 게임을 운영해야 하기 때문에 복잡성이 높다.
연구팀이 개발한 기법은 기존 MCTS와 게임 내 상태에 대한 기댓값을 시뮬레이션 없이 바로 추정해 짧게는 몇 분에서 길게는 몇 시간 걸리던 시뮬레이션 추론 시간을 밀리초(1천분의 1초)에서 초 단위 범위로 줄였다.
안창욱 교수는 “MSTS 활용이 불가능하던 실시간 게임 환경에서 각 개체의 공격, 후퇴 등 실시간 행동 결정을 했다는 점에서 의미가 있다”며 “향후 상충하는 이해관계 갖는 자율주행, 주식거래와 같은 응용문제에서도 실시간 의사결정을 내리는 데 활용할 수 있을 것”이라고 말했다.
연구 결과는 다학제 공학 분야 국제학술지 ‘Engineering Applications of Artificial Intelligence’에 지난 1일자로 게재됐다.